The berational geometry of GIT quotients
(ω./ R. Rebomet)
Geometric learnt Theory (GT), Mumford ' $60 s$, is the quotient theory in algebraic geometry. Interesting for moduli theory.

- X prog variety /C
- L ample line bundle
-f reductive group (complexffecation of a
Assume $G \geqslant(x, L)$
(so the action lifts
to a linear action on L) maximal compact eeg. $\quad U(n) \subset G L(n)$

Gool Construct a "recroneble" quatieit of (X,L) by 6
Two equivaleat approaches: cover X by affines, or work glbally.
Offine opproach: (i) locally corrider $u \subset X$ affis $U=X-V(S), \quad s \in H^{\circ}(X, L)^{G}$, consider
$U / / G=\operatorname{spec}\left(A^{G}\right)$, where $\operatorname{spec} A=C l$
 fundion Important: A A^{G} fintely gevental.
(ii) Ghe the UNG ocross differat charts to produce $X / L G$
(iii) Prgectuve approach: $X_{L G}=\operatorname{Proj}\left(\prod_{k \geqslant 0}^{B} H^{0}(X, k L)^{G}\right)$

Basic properties: $X / /_{L} G$ proactive (proper, separated)

- Not immediately clear what points of $X L_{L}$ are.

Def we ray $x \in X$ (or $G . x)$ is
(i) semustable if $\exists \quad s \in H^{\circ}(X, k L)$ with $s(x) \neq 0$.
(ii) polystable if x is semustable \& $G \cdot x$
(iii) stable if x is polystable \& G_{x} finite.
$X^{S S} C X$ is Zarski open. We have a rational map $X \rightarrow X P / L$, defined on $X^{S S}$.

$$
x^{s s} \rightarrow x / /<G
$$

The $(ब)$ points of $X / / L G$ are precisely in byeition with polystable orbits. (/C)

Unstable points are groped!
Variation of GIT
Q What is the dependence of $X / L G$ on L ?
The (Oodgachou-Hu, Thaddeus) Consider the ample cone $\operatorname{AmPQ}(x)^{G}$ such that \exists stable point. Then:
(i) any two G IT quokits of X are binational.
(ii) only binitisly many trotconally equwelts
(ii) $G \pi$ quetat pear.
(iii) the burationd travoformotions are (Thaddeus) flip

Interlude on moduli theory
GTT is built to construct moduli spaces. (varieties, sheaves, maps). Roughly:
(i) "embed all objects in sone large varetyl scheme
(ii) clack orbits for sone group action are somorthisen dosses of $\left(\begin{array}{l}e \cdot g . ~(q L C a+1)) \\ 2\end{array} \mathbb{p}^{n}\right)$ objects"

This process works for $\overline{\mu_{g}}, \overline{\mu_{g}, n}$, model of rabble vector bundles over a moot ip po curve GTT, Kontsevich's stable maps.

In higher dim, GIT is usually a moluational phloshoply, not so anuch a tool (e.g K slabilit, Bridgeland stability conditions on triangulated stayones). The avalogece of VGIT in moduli lteory © wall-crosing of moduli spoces: the hine bundle is a "stabilily condition" \& vorging the stability condion sares the moduli space treationally.
E.g. Varying cefferceents in $\bar{U}_{g n}$, Bridgeland stabilitg conditions.
But GIT produces fiinitdy many, buctional models: how to oblan more?

Unversal variation of GIT
We ask how the GIT quotient depends on X, as a counterpart to VGIT
Def A GIT quaticat over (X, G) is a $G H$ quotient $Y / / L C$, where $\pi: Y \rightarrow K$ is a G-equrariant ${ }^{2} y$ burationel worphisen. $G Q\left(Y, L_{y}\right)$
The (Q-Reboulet) GIT quotients over (X, G) are all mutual brictiond, and form as progetie system. The proecture limit is sonorehic to the Rueman-Zariski space of $X / / G$ for any L

Here: - To say that there form a procetie system $Z_{1 G}$ means that for any

$$
Y_{1} / L_{C} \epsilon^{Z_{1 / G}} \cdots Y_{2} / / L_{2}
$$

we find a $Z / / G_{z}$ with a morphism to both

- The Ruemam-Zarigki apace of C prog var W is the practice limit of all burational models of ω. It is a locally ringed space.
- Two prog varithe are buratonal
\Leftrightarrow their RZ spaces are somonplio

Moduli theory: bree return
Our work suggests its unlerentiog topple vary both the "stability condition" = linebdl \& the "parameter space" $=\times$ tref (biralocell)
Q What does this mean? Does this work for Bredgelard stability indiction? What are becational Grauspormactias of trungulated categories? Eeg. $D^{b} \operatorname{Coh}(x)$?
(dos in the proof
The proofs are fairly straight forward. Prop (DR) Let $Y_{1} / / L_{1} G, \quad Y_{2} / L_{2} G$ be GIT quoter's over (X, G). Then they are biratiod Pf $\exists x_{1}, x_{2}$ stable in y_{1}, y_{2}, so let $x_{1} \in U_{1}=y_{1}-V\left(s_{1}\right), \quad x_{2} \in U_{2}=y_{2}-V\left(s_{2}\right)$ Then $U_{1} \|\left(G\right.$ is zarista dare in $Y_{1} U_{[}, 6, U_{2} \|(C$ sinaloa as $y_{11} y_{2}$ are buratoond to $x_{0}-3$ $u c x$ embedding in u_{1}, u_{2} \& then UNI $\subset U$ Ill as a Zarinki dene mulct.是

Thar One oblanis a prog system Pf Need to find

By buratonally set $W \subset Y_{1} \mathbb{L}_{1} G$ st.

$$
\begin{aligned}
& B C_{W}\left(Y_{1} / / L L_{G}\right) \rightarrow Y_{2} / / L_{2} G \\
& Y_{1} / / L_{1} G .
\end{aligned}
$$

By Kirwan. Recultiein

$$
\begin{aligned}
& B C_{\omega}\left(Y_{1} / l_{L}, G\right) \\
& \cong\left(B C_{w} Y_{1}\right) / / / G
\end{aligned}
$$

